翻訳と辞書
Words near each other
・ Centrifugal-type supercharger
・ Centrifugation
・ Centrifuge
・ Centrifuge Accommodations Module
・ Centrifuge casting
・ Centrifugus
・ Centrify
・ Centrilobular necrosis
・ CENTRIM
・ Centrin
・ Centring
・ Centrino
・ Centrio
・ Centriole
・ Centripetal (disambiguation)
Centripetal Catmull–Rom spline
・ Centripetal force
・ Centripetal Spring Armchair
・ Centriq Training
・ Centris
・ Centris elegans
・ Centris pallida
・ Centriscidae
・ Centriscus
・ Centriscus cristatus
・ Centriscus scutatus
・ Centrism
・ Centrist Alliance
・ Centrist Coalition
・ Centrist Democrat International


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Centripetal Catmull–Rom spline : ウィキペディア英語版
Centripetal Catmull–Rom spline
In computer graphics, centripetal Catmull–Rom spline is a variant form of Catmull-Rom spline 〔E. Catmull and R. Rom. A class of local interpolating splines. Computer Aided Geometric Design, pages 317-326, 1974.〕 formulated according to the work of Barry and Goldman.〔P. J. Barry and R. N. Goldman. A recursive evaluation algorithm for a class of Catmull–Rom splines. SIGGRAPH Computer Graphics, 22(4):199-204, 1988.〕 It is a type of interpolating spline (a curve that goes through its control points) defined by four control points \mathbf_0, \mathbf_1, \mathbf_2, \mathbf_3, with the curve drawn only from \mathbf_1 to \mathbf_2.
==Definition==

Let \mathbf_i = (\quad y_i )^T denote a point. For a curve segment \mathbf defined by points \mathbf_0, \mathbf_1, \mathbf_2, \mathbf_3 and knot sequence t_0, t_1, t_2, t_3, the centripetal Catmull-Rom spline can be produced by:
: \mathbf = \frac\mathbf_1+\frac\mathbf_2
where
: \mathbf_1 = \frac\mathbf_1+\frac\mathbf_2
: \mathbf_2 = \frac\mathbf_2+\frac\mathbf_3
: \mathbf_1 = \frac\mathbf_0+\frac\mathbf_1
: \mathbf_2 = \frac\mathbf_1+\frac\mathbf_2
: \mathbf_3 = \frac\mathbf_2+\frac\mathbf_3
and
:t_ = \left()^ + t_i
in which \alpha ranges from 0 to 1 for knot parameterization, and i = 0,1,2,3 with t_0 = 0 . For centripetal Catmull-Rom spline, the value of \alpha is 0.5. When \alpha = 0, the resulting curve is the standard Catmull-Rom spline (uniform Catmull-Rom spline); when \alpha = 1, the product is a chordal Catmull-Rom spline.
Plugging t = t_1 into the spline equations \mathbf_1, \mathbf_2, \mathbf_3, \mathbf_1, \mathbf_2, and \mathbf shows that the value of the spline curve at t_1 is \mathbf = \mathbf_1. Similarly, substituting t = t_2 into the spline equations shows that \mathbf = \mathbf_2 at t_2. This is true independent of the value of \alpha since the equation for t_ is not needed to calculate the value of \mathbf at points t_1 and t_2.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Centripetal Catmull–Rom spline」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.